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What is Induction?

Induction is a powerful and elegant proof technique for specific type of 
mathematical statements (ones true for all positive integers)

Induction naturally builds on our intuition to “try out examples” when presented 
with a new problem



How to construct an inductive proof?

To prove a statement by induction do the following …

1) State your problem in the form: Pn for all positive integers n

2) Demonstrate that Pn holds for a small fixed n (usually n=0 or n=1) (aka “base case”)

3) Assume that Pn is true for an arbitrary positive integer n (aka “inductive hypothesis)

4) Show that Pn implies Pn+1 by invoking the induction hypothesis (“aka inductive step)



Let’s try an example together!

Prove that every power of of 13 can be written as the sum of two squares



Claim: Every power of 13 can be written as the sum of two squares

1) Problem Statement: For all positive integers n, there exists integers x and y such that 13n = x2 + y2

2) Base Case (n=1): 13 = 4 + 9 = 22 + 32

3) Induction Hypothesis: Let n be a natural number. Assume that 13n = x2 + y2 for some integers x and y

4) 13n+1   = 13 x 13n 

= (22 + 32)13n 

= (22 + 32)(a2 + b2) for some integers a and b by the induction hypotheses

= 22a2 + 32b2 + 32a2 + 22b2

= (22a2 + 12ab + 32b2) + (32a2 - 12ab + 22b2)

= (2a+3b)2 + (3a - 2b)2 and now let x = 2a + 3b and y = 3a - 2b which are both integers

= x2 + y2  → QED!
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Why does induction work?

If you prove the base case, the inductive hypothesis and the inductive proof can 
be iteratively applied to prove that the claim hold for all positive integers

Base Case = P0 → P1 → P2 → P3 → …. Pn → Pn+1 → … 

And inductive proof is like an algorithm with a loop that proves the claim for each n



Why does induction work?

Say we proved the base case for  P0

Assume for sake of contradiction that claim Pn does not hold for some positive integer n. 

Let n* be the smallest positive integer for such that Pn* does not hold. Then Pn*-1 must 
hold.

But by the inductive step  Pn*-1 implies  Pn*. Thus we have found a contradiction!



When does induction fail?

Claim: Everyone loves algorithms

Proof: 

Problem Statement: For all positive integers n, any group of n people, all people in the 
group love algorithms

Base Case: Zoe loves algorithms!

Inductive Hypothesis: Assume that any group of n people love algorithms

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the 
group. By the IH they all love algorithms. Isolate the shortest n people. By the IH they all 
love algorithms. The union of these two subgroup contains all people in the group. Thus all 
people in the group love algorithms!

Where are the errors in this proof? 
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When does induction fail?

Claim: Everyone loves algorithms

Proof: 

Problem Statement: For any group of n people, all people in the group love algorithms

Base Case: Zoe loves algorithms! (Base case is not general! Should be for any group of 1)

Inductive Hypothesis: Assume that any group of n people love algorithms

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the 
group. By the IH they all love algorithms. Isolate the shortest n people. By the IH they all 
love algorithms. Clearly, union of these two subgroup contains all people in the group. Thus 
all people in the group love algorithms!

Where are the errors in this proof? 



Let’s try another example!



When does induction fail?

Claim: Everyone has the same name

Proof: 

Problem Statement: For any group of n people, all people in the group have the same name

Base Case: A single person has their own name

Inductive Hypothesis: Assume that for any group of n people, everyone in the group has the same name

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the group. By the IH they 
all have the same name. Isolate the shortest n people. By the IH they all have the same name. The second 
tallest person is in both groups. Thus everyone in each subgroup has the same name as the second tallest 
person. The union of the two subgroups contains the entire group. Thus everyone in the entire group has the 
same name (the name of the second tallest person). 

Where are the errors in this proof? 
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When does induction fail?

Claim: Everyone has the same name

Proof: 

Problem Statement: For any group of n people, all people in the group have the same name

Base Case: A single person has their own name

Inductive Hypothesis: Assume that for any group of n people, everyone in the group has the same name

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the group. By the IH they 
all have the same name. Isolate the shortest n people. By the IH they all have the same name. The second 
tallest person is in both groups. Thus everyone in each subgroup has the same name as the second tallest 
person. The union of the two subgroups contains the entire group. Thus everyone in the entire group has the 
same name (the name of the second tallest person).

IS implicitly assume that there are at least 3 people in the group. Base case is for n=1, but missing n=2. IS does not hold for n+1=2



More examples (increasing difficulty)

1) The sum of the n first odd numbers in n2

2) The sum of integers from 1 to n is n(n-1)/2
3) The number of nodes in a complete binary tree of height n is 2n-1
4) 2n+2 + 32n+1 is divisible by 7 for all positive integers
5) All polygons can be “triangulated” with diagonals
6) Let finitely many lines divides a plane into regions. There is always a way to 

colors the regions with two colors in such a way that adjacent regions have 
different colors.



Solutions

4) Page 3 of https://math.dartmouth.edu/archive/m25f19/public_html/Documents/InductionPractice_solns.pdf

5) https://math.stackexchange.com/questions/1877253/triangulation-of-a-simple-polygon-elementary-proof

6) https://www.cut-the-knot.org/Curriculum/Geometry/TwoColorColoring.shtml

https://math.dartmouth.edu/archive/m25f19/public_html/Documents/InductionPractice_solns.pdf
https://math.stackexchange.com/questions/1877253/triangulation-of-a-simple-polygon-elementary-proof
https://www.cut-the-knot.org/Curriculum/Geometry/TwoColorColoring.shtml


Weak Induction                vs         Strong Induction

Base Case: Show that Pn is true 
for small fixed n (usually n=0 or 
n=1) 

IH: Assume that Pn is true for 
some positive integer n

IS: Prove that Pn implies Pn+1 

Base Case: Show that Pn is true 
for small fixed n (usually n=0 or 
n=1) 

IH: Show that Pk is true for all 
0<k<n for some positive integer n

IS: Prove that the IH implies that 
Pn+1 is also true 



Weak vs Strong Induction

Strong Induction assume the statement is true at all steps from the base case to 
the n-th step

Weak induction only assumes that the statement is true at the n-th step

Weak and Strong Induction are logically equivalent, but sometimes it is simpler to 
prove something with strong induction



Let’s try an example of Strong Induction!

Prove that every integer can be written as a product of prime factors.



Claim: Every integer can be written as a product of prime factors

1) Problem Statement: For all natural numbers n>1, n=x1 * x2 * … * xk where xi is prime for all i

2) Base Case (n=2): 2 is a product of one prime (itself)

3) Induction Hypothesis: Let n be a positive integers. Assume that  for all integers 2<k<=n, k can be written as a product of prime numbers

4)

Case 1: 

If n+1 is prime, then it can be written a product of one prime (itself)

Case 2: 

If n+1 is not prime then it can be written as the product of two factors, a and b. 

So n+1 = a*b and we know that 2<a,b<n. The IH applies to both a and b. 

So a=x1 * x2 * … * xk  and b=y1 * y2 * … * ym  where xi and yj are prime for all i and j. 

Then n+1 = x1 * x2 * … * xk*x1 * x2 * … * xk  which is a product of primes. Thus the IH hold for n+1
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Big-Oh Notation!
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In this class we will use…
• Big-Oh notation!

• Gives us a meaningful way to talk about the 
running time of an algorithm independent of 
programming language, computing platform, etc., 
without having to count all the operations.
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Main idea:

Focus on how the runtime scales with n (the input size). 

Number of operations Asymptotic Running Time

We say this algorithm is 
“asymptotically faster” 

than the others.

(Only pay attention to the largest 
function of n that appears.)Some examples…
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Example Runtime

T(n) = 25n2 + 5n + 7 ms

The constant factor of 
25 depends on the 
computing platform..

As n gets large, the 
lower-order terms 
don’t really matter

= O(n2)
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Informal definition for O(…)

 

Here, “constant” means “some number 
that doesn’t depend on n.”

pronounced “big-oh of …” or sometimes “oh of …”
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g(n) = n2

 

3g(n) = 3n2

T(n) = 2n2 + 10
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Formal definition of O(…)

 

“There exists”

“For all”

“such that”

“If and only if”
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g(n) = n2

3g(n) = 3n2

T(n) = 2n2 + 10
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g(n) = n2

3g(n) = 3n2

(c = 3)

T(n) = 2n2 + 10

 

n
0
=4
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g(n) = n2

3g(n) = 3n2

(c = 3)

T(n) = 2n2 + 10

 

n
0
=4

Formally:
• Choose c = 3
• Choose n

0
 = 4

• Then:
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Formally:
• Choose c = 7
• Choose n

0
 = 2

• Then:

 

g(n) = n2

7g(n) = 7n2

n
0
=2

T(n) = 2n2 + 10

There is no “correct” 
choice of c and n

0
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• Choose c = 1
• Choose n

0
 = 1

• Then

 

g(n) = n2

T(n) = n
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Ω(…) means a lower bound

 

Switched these!!

pronounced “big-omega of …”
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• Choose c = 1/3
• Choose n

0
 = 2

• Then

 

 

T(n) = nlog(n)

g(n) = 3n

g(n)/3 = n
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Θ(…) means both!

 

pronounced “big-theta of …” or sometimes “theta of”
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Take-away from examples

• To prove T(n) = O(g(n)), you have to come up with c 
and n

0 
so that the definition is satisfied.

• To prove T(n) is NOT O(g(n)), one way is proof by 
contradiction:

• Suppose (to get a contradiction) that someone gives you 
a c and an n

0
 so that the definition is satisfied.

• Show that this someone must by lying to you by deriving 
a contradiction.
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Practice

• f(n) = n and g(n) = n2 - n 

f(n) =      g(n)

• f(n) = 2n and g(n) = n2

f(n) =      g(n)

• f(n) = 8n and g(n) = n log n

f(n) =      g(n)



48

Practice

• f(n) = n and g(n) = n2 - n 

f(n) =O(g(n))     

• f(n) = 2n and g(n) = n2

f(n) =Ω(g(n))   polynomial functions are slower than 
exponential functions

n grows slower than n2
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Practice

• f(n) = 8n and g(n) = n log n

f(n) =O(g(n))
with c = 8, n

0
 = 2, 8n ≤ 8n log n

1 ≤ log n, ∀n ≥ 2

f(n) = O(g(n))

lim
n→∞ 

8n / n log n 

= lim
n→∞ 

8 / log n 

= 0
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State order of growth in Θ notation

• f(n) = 50

• f(n) = n + … + 3 + 2 + 1

• f(n) = (g(n))2 where g(n) = √n + 5
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State order of growth in Θ  notation

• f(n) = 50

f(n) = Θ(1) 

• f(n) = n + … + 3 + 2 + 1

f(n) = n(n+1)/2 = (n2 + n)/2 = Θ(n2) 

• f(n) = (g(n))2 where g(n) = √n + 5

f(n) = (√n + 5)2 = n + 10√n + 25 = Θ(n)
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Summary of Definitions

f(n) = O(g(n)) if there exists a c > 0 where after large 
enough n, f(n) ≤ c * g(n)

Asymptotically f grows as most as much as g

f(n) = Ω(g(n)) if g(n) = O(f(n))

Asymptotically, f grows at least as much as g

f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n))

Asymptotically, f and g grow the same
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Important Takeaways
• If d > c, nc = O(nd) but nc ≠ Ω(nd)
• Asymptotic notation only cares about the highest 

growing terms: e.g. n2 + n = Ω(n2)
• Asymptotic notation does not care about leading 

constants: e.g. 50n = Θ(n)
• Any exponential with base > 1 grows more than 

any polynomial
• The base of the exponential matters: e.g. 3n = 

O(4n) but 3n ≠ Ω(4n)



Any questions?



More Practice! (If time)

Assume that f(n), g(n), and h(n) are all non-negative functions of 
integers.

1. If f(n) = O(g(n)), then f(n) * h(n) = O(g(n) * h(n))

f(n) = Ω(g(n)) if g(n) = O(f(n))



More Practice! (if time)


