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What is Induction?

Induction is a powerful and elegant proof technique for specific type of
mathematical statements (ones true for all positive integers)

Induction naturally builds on our intuition to “try out examples” when presented
with a new problem



How to construct an inductive proof?

To prove a statement by induction do the following ...

1) State your problem in the form: P_ for all positive integers n
2) Demonstrate that P_holds for a small fixed n (usually n=0 or n=1) (aka “base case”)
3) Assume that P_is true for an arbitrary positive integer n (aka “inductive hypothesis)

4) Show that P_implies P__, by invoking the induction hypothesis (“aka inductive step)



Let’s try an example together!

Prove that every power of of 13 can be written as the sum of two squares



Claim: Every power of 13 can be written as the sum of two squares

1)  Problem Statement: For all positive integers n, there exists integers x and y such that 13" = x? + y?



Claim: Every power of 13 can be written as the sum of two squares

1)  Problem Statement: For all positive integers n, there exists integers x and y such that 13" = x? + y?

2) BaseCase (n=1):13=4+9=22+3?



Claim: Every power of 13 can be written as the sum of two squares

1) Problem Statement: For all natural numbers n, there exists integers x and y such that 13" = x? + y?
2) BaseCase (n=1):13=4+9=22+3?

3)  Induction Hypothesis: Let n be a positive integers. Assume that 13" = x? + y? for some integers x and y



Claim: Every power of 13 can be written as the sum of two squares

1) Problem Statement: For all natural numbers n, there exists integers x and y such that 13" = x? + y?
2) BaseCase (n=1):13=4+9=22+3?
3)  Induction Hypothesis: Let n be a positive integers. Assume that 13" = x? + y? for some integers x and y

4) 13" =13 x13"
= (22 + 32)13"
= (22 + 3%)(a® + b?) for some integers a and b by the induction hypotheses
= 2%a% + 3%b? + 3%a% + 22p?
= (22a2 + 12ab + 32b?) + (32a2 - 12ab + 2%b?)
= (2a+3b)? + (3a - 2b)? and now let x = 2a + 3b and y = 3a - 2b which are both integers
=x?+y? — QED!



Why does induction work?

If you prove the base case, the inductive hypothesis and the inductive proof can
be iteratively applied to prove that the claim hold for all positive integers

Base Case = P0 — F’1 — P2 — P3 — Pn — Pn+1 —

And inductive proof is like an algorithm with a loop that proves the claim for each n



Why does induction work?

Say we proved the base case for P,

Assume for sake of contradiction that claim P_ does not hold for some positive integer n.

Let n* be the smallest positive integer for such that P . does not hold. Then P, , must
hold.

But by the inductive step P, , implies P _.. Thus we have found a contradiction!



When does induction fail?

Claim: Everyone loves algorithms
Proof:

Problem Statement: For all positive integers n, any group of n people, all people in the
group love algorithms

Base Case: Zoe loves algorithms!
Inductive Hypothesis: Assume that any group of n people love algorithms

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the
group. By the IH they all love algorithms. Isolate the shortest n people. By the |H they all
love algorithms. The union of these two subgroup contains all people in the group. Thus all
people in the group love algorithms!
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Problem Statement: For any group of n people, all people in the group love algorithms
Base Case: Zoe loves algorithms!
Inductive Hypothesis: Assume that any group of n people love algorithms
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love algorithms. Clearly, union of these two subgroup contains all people in the group. Thus
all people in the group love algorithms!

Where are the errors in this proof?



When does induction fail?

Claim: Everyone loves algorithms

Proof:
Problem Statement: For any group of n people, all people in the group love algorithms
Base Case: Zoe loves algorithms! (Base case is not general! Should be for any group of 1)
Inductive Hypothesis: Assume that any group of n people love algorithms

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the
group. By the IH they all love algorithms. Isolate the shortest n people. By the IH they all
love algorithms. Clearly, union of these two subgroup contains all people in the group. Thus
all people in the group love algorithms!

Where are the errors in this proof?



Let’'s try another example!



When does induction fail?

Claim:

Proof:

Everyone has the same name

Problem Statement: For any group of n people, all people in the group have the same name
Base Case: A single person has their own name
Inductive Hypothesis: Assume that for any group of n people, everyone in the group has the same name

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the group. By the IH they
all have the same name. Isolate the shortest n people. By the IH they all have the same name. The second
tallest person is in both groups. Thus everyone in each subgroup has the same name as the second tallest
person. The union of the two subgroups contains the entire group. Thus everyone in the entire group has the
same name (the name of the second tallest person).
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When does induction fail?

Claim: Everyone has the same name
Proof:
Problem Statement: For any group of n people, all people in the group have the same name
Base Case: A single person has their own name
Inductive Hypothesis: Assume that for any group of n people, everyone in the group has the same name

Inductive Step: Say you have a group of n+1 people. Isolate the tallest n people in the group. By the IH they
all have the same name. Isolate the shortest n people. By the IH they all have the same name. The second
tallest person is in both groups. Thus everyone in each subgroup has the same name as the second tallest
person. The union of the two subgroups contains the entire group. Thus everyone in the entire group has the
same name (the name of the second tallest person).

IS implicitly assume that there are at least 3 people in the group. Base case is for n=1, but missing n=2. IS does not hold for n+1=2



More examples (increasing difficulty)

1)
2)
3)
4)
5)
6)

The sum of the n first odd numbers in n?

The sum of integers from 1 to n is n(n-1)/2

The number of nodes in a complete binary tree of height n is 2"-1

2"2 + 32" is divisible by 7 for all positive integers

All polygons can be “triangulated” with diagonals

Let finitely many lines divides a plane into regions. There is always a way to
colors the regions with two colors in such a way that adjacent regions have
different colors.



Solutions

4) Page 3 of https:/math.dartmouth.edu/archive/m25f19/public_htmi/Documents/InductionPractice_solns.pdf

5) https://math.stackexchange.com/questions/1877253/trianqulation-of-a-simple-polygon-elementary-proof

6) https://www.cut-the-knot.org/Curriculum/Geometry/TwoColorColoring.shtml



https://math.dartmouth.edu/archive/m25f19/public_html/Documents/InductionPractice_solns.pdf
https://math.stackexchange.com/questions/1877253/triangulation-of-a-simple-polygon-elementary-proof
https://www.cut-the-knot.org/Curriculum/Geometry/TwoColorColoring.shtml

Weak Induction

Base Case: Show that Pn IS true
for small fixed n (usually n=0 or
n=1)

IH: Assume that P_is true for
some positive integer n

IS: Prove that Pn implies Pn+1

Strong Induction

Base Case: Show that Pn IS true
for small fixed n (usually n=0 or
n=1)

IH: Show that P, is true for all
O<k<n for some positive integer n

IS: Prove that the IH implies that
P_,,Is also true



Weak vs Strong Induction

Strong Induction assume the statement is true at all steps from the base case to
the n-th step

Weak induction only assumes that the statement is true at the n-th step

Weak and Strong Induction are logically equivalent, but sometimes it is simpler to
prove something with strong induction



Let’s try an example of Strong Induction!

Prove that every integer can be written as a product of prime factors.



Claim: Every integer can be written as a product of prime factors

1) Problem Statement: For all natural numbers n>1, n=x, * x, * ... * x,_where x. is prime for all i



Claim: Every integer can be written as a product of prime factors

1) Problem Statement: For all natural numbers n>1, n=x, * x, * ... * x,_where x. is prime for all i

2) Base Case (n=2): 2 is a product of one prime (itself)



Claim: Every integer can be written as a product of prime factors

*

1) Problem Statement: For all natural numbers n>1, n=x, * x,

... * X, Where x. is prime for all i

2) Base Case (n=2): 2 is a product of one prime (itself)

3) Induction Hypothesis: Let n be a positive integers. Assume that for all integers 2<k<=n, k can be written as a product of prime numbers



Claim: Every integer can be written as a product of prime factors

*

1) Problem Statement: For all natural numbers n>1, n=x, * x,

... * X, Where x. is prime for all i
2) Base Case (n=2): 2 is a product of one prime (itself)
3) Induction Hypothesis: Let n be a positive integers. Assume that for all integers 2<k<=n, k can be written as a product of prime numbers
Case 1:
If n+1 is prime then

Case 2:

If n+1 is not prime then



Claim: Every integer can be written as a product of prime factors

*

1) Problem Statement: For all natural numbers n>1, n=x, * x,

... * X, Where x. is prime for all i
2) Base Case (n=2): 2 is a product of one prime (itself)
3) Induction Hypothesis: Let n be a positive integers. Assume that for all integers 2<k<=n, k can be written as a product of prime numbers
Case 1:
If n+1 is prime then it can be written a product of one prime (itself)

Case 2:

If n+1 is not prime then



Claim: Every integer can be written as a product of prime factors

1) Problem Statement: For all natural numbers n>1, n=x, * x, * ... * x,_where x. is prime for all i
2) Base Case (n=2): 2 is a product of one prime (itself)

3) Induction Hypothesis: Let n be a positive integers. Assume that for all integers 2<k<=n, k can be written as a product of prime numbers

Case 1:
If n+1 is prime then it can be written a product of one prime (itself)

Case 2:
If n+1 is not prime then it can be written as the product of two factors, a and b.
So n+1 = a*b. And we know that 2<a,b<n, so te IH applies to both a and b.

Soa=x, *x,*...*x and b=y, *y,*...*y_ where x, and y,are prime for all i and j.

2

Thenn+1=x, *x,* ... " XX, * X, * ... * X which is a product of primes. Thus the IH hold for n+1

2 k 1 2



Big-Oh Notation!



In this class we will use...

* Big-Oh notation!

* Gives us a meaningful way to talk about the
running time of an algorithm independent of
programming language, computing platform, etc.,
without having to count all the operations.
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Main idea:

Focus on how the runtime scales with n (the input size).

(Only pay attention to the largest
function of n that appears.)

Some examples...

Number of operations Asymptotic Running Time

— We say this algorithm is
“asymptotically faster”
1 @) +1 O(log(n)) than the others.



Example Runtime

T(n) =25n°+5n + 7 ms

/N

The constant factor of As n gets large, the
25 depends on the lower-order terms
computing platform.. don’t really matter

= 0(n?)



pronounced “big-oh of ...” or sometimes “oh of ...”

Informal definition fo\r‘O(. )

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* We say “T(n) is 0(g(n))” if:
for large enough n,
T (n) is at most some constant multiple of g(n).

Here, “constant” means “some number
that doesn’t depend on n.”
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Example

2n% + 10 = 0(n?)

250

200 -

150 A

100 -

= T(n)=2x"2 + 10
=== gin)=x"2
=== 3*g(n) = 3x"2

10

for large enough n,
T (n) is at most some constant
multiple of g(n).

3g(n) = 3n?

T(n) =2n%+ 10

g(n) =n’



Formal definition of O(...) ﬁ,

e Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* Formally,
T(n) = 0(g(n))
“If and only if” = “Forall”
dc,ng > 0 s.t. Vn = n,,
T(n)<c-gn) “such that”

“There exists”
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Example

2n% + 10 = 0(n?)

250

200 -

150 A

100 -

= T(n)=2x"2 + 10
=== g{n)=x"2
=== 3*g(n) = 3x"2

10

T(n) =0(g(n))
=
dc,ng >0 s.t. Vn = n,,

T(n) <c-gn)

3g(n) = 3n?

T(n) =2n%+ 10

g(n) =n’
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Example
2n% + 10 = 0(n?)
250 ‘
— T(n)=2x"2 + 10 n =4 /
=== gin)=x"2 0 /'
200 1 === 3*g(n) = 3x"~2 /
x=n0=4 "4

150 A

100 A

10

T(n) =0(g(n))
=
dc,ng >0 s.t. Vn = n,,

Tn) <c-gn)
3g(n) = 3n?
(c=3)

T(n) =2n%+ 10

g(n) =n’
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T(n) = 0(gn))

Example o
2 . 2 dc,ng > 0 s.t. Vn = n,,
2n® +10 = 0(n*) T(n) < c- g(n)
250 3g(n) = 3n? Formally:
s ;n})=2i;2 sl n,=4 /I (C = 3) e Choosec=3
-== gin)=x /
200 { === 3*g(n) = 3x"2 J * Choose n,=4
x=n0=4 R4 T(n) — 2n2 ¥ 10. Then:

vn = 4,
2n% +10 < 3 - n?

150 A

100 A

g(n) =n’

10



Same example
2n?% + 10 = 0(n?)

250

200 A

150 +

100 -

7g(n) = 7n?

= T(n)=2x"2 + 10
=== gn)=x"2
=== T7*g(n) = 7x"2

g(n) =n’

T(n) = 0(gm))

—

dc,ng > 0 s.t. Vn = ng,

Tn) <c-gn)

Formally:

* Choosec=7
T(n)=2n?+10 * Choosen =2

* Then:

vn = 2,
2n? 4+10< 7 - n?

There is no “correct”
choice of c and n,



T(n) = 0(gm))

O(...) is an upper bound: =

n

4.0 -
35
3.0 4
2.5 A
2.0 1
15 -
10 -
0.5 1

0.0 -

= 0(n?)

T(n) = O(g(n))

— T(n)=n
- g(n) =n"2
1*g(n)

=1

000 025 050 075 100 125 150 175 200

dc,ng > 0 s.t. Vn = ng,

Tn) <c-gn)

g(n) = n?
e Choosec=1
* Choose n,= 1
T(n) =n i Then
vn = 1,
n < n?



pronounced “big-omega of ...”

()(...) means a lower bound

e Wesay “T'(n) is Q(g(n))” if, for large enough n,
T (n) is at least as big as a constant multiple of g(n).

* Formally,

T(n) = Q(gn))
—

dc,ng > 0 s.t. Vn = n,,

c-gn) <T(n)
N A

Switched these!!
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T(n) = Q(gm))

Example dc,ng > 0 ;::: vn = n,,
nlogz (Tl) — Q(Bn) c-gn) <Tm)

T(n) = Omegalg(n))

g(n) =3n

- T(n) = n log(n)
- g(n) = 3*n
— 1/3*g(n)

n=2

T(n) =nlog(n)  « Choosec=1/3
 Choose n,= 2

e Then
vn = 2,

3n
3 < nlog,(n)

g(n)/3=n




pronounced “big-theta of ...” or sometimes “theta of”

©(...) means both!

e We say “T'(n) is ©(g(n))” iff both:

T(n) = 0(g(n))

and

T(n) = Q(gn))



T(n) = 0(g(m))

Non_ExampIe: dc,ng >0 ;:; Vn = no,
n<is not O(n) T < ¢ g

* Proof by contradiction:
e Suppose that n? = 0(n).
* Then there is some positive c and nyso that:

vn = n,, n<c-n
* Divide both sides by n:
Vn = n,, n<c

* That’s not true!!! What about, say, ng +c+ 17
* Thenn = ng, but, n >c

e Contradiction!



Take-away from examples

* To prove T(n) = O(g(n)), you have to come up with c
and n,so that the definition is satisfied.

* To prove T(n) is NOT O(g(n)), one way is proof by
contradiction:

» Suppose (to get a contradiction) that someone gives you
a cand an n, so that the definition is satisfied.

* Show that this someone must by lying to you by deriving
a contradiction.



Practice

. f(n) =nand g(n) =n?-n

f(n)=__g(n)
. f(n) =2"and g(n) = n?
f(n)=—__g(n)

. f(n) =8nand g(n) =nlog n
f(n)=__g(n)



Practice

. f(n) =nand g(n) =n?-n
f(n) =O(g(n))  n grows slower than n*

. f(n) =2"and g(n) = n?
3 polynomial functions are slower than
f(n) ={X(g(n)) exponential functions



Practice

- f(n) =8nand g(n) =nlogn
f(n) =0(g(n))

with c =8, n0=2,8nS8n log n

1<logn, Vn=2
f(n) = O(g(n))

lim __8n/nlogn
=lim _ _8/logn
=0



State order of growth in © notation

. f(n) =50
. f(n)=n+...+3+2+1

. f(n) = (g(n))* where g(n) = Vn + 5



State order of growth in ® notation

. f(n) =50
f(n) = ©(1)
- f(n)=n+...+43+2+1
f(n) = n(n+1)/2 = (n* + n)/2 = ©(n?)
. f(n) = (g(n))>where g(n) =Vn + 5
f(n) = (Vn + 5)2 = n + 10Vn + 25 = O(n)



Summary of Definitions

f(n) = O(g(n)) if there exists a ¢ > 0 where after large
enough n, f(n) < c * g(n)

Asymptotically f grows as most as much as g
f(n) = Q(g(n)) if g(n) = O(f(n))

Asymptotically, f grows at least as much as g
f(n) = O©(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n))

Asymptotically, f and g grow the same



Important Takeaways

. Ifd >c, n®=0(n% but n® # Q(nY)

- Asymptotic notation only cares about the highest
growing terms: e.g. n* + n = Q(n?)

. Asymptotic notation does not care about leading
constants: e.g. 50n = O(n)

- Any exponential with base > 1 grows more than
any polynomial

. The base of the exponential matters: e.g. 3" =
0(4") but 3" # QQ(4")



Any questions?



More Practice! (If time)

Assume that f(n), g(n), and h(n) are all non-negative functions of
integers.

1. 1ff(n) = O(g(n)), then f(n) * h(n) = O(g(n) * h(n))

f(n) = Q(g(n)) if g(n) = O(f(n))



More Practice! (if time)



